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book Symmetry in Science and Art, thus greatly 
facilitating the present work. 
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Abstract 

The limited 'window' in reciprocal space through 
which it is possible to observe diffraction phenomena 
sets a reciprocal limit to the resolution of detail in 
density distributions. The limit of resolution depends on 
whether the detail is one-, two-, or three-dimensional, 
and to some extent it is possible to choose between (i) 
lack of resolution associated with a large central maxi- 
mum representing a point-object and (ii) false details 
associated with a smaller central maximum and more 
pronounced diffraction troughs. In any case, however, 
the limit of resolution is about one-quarter to one-half 
of the wavelength of the radiation used. Intensities 
measured by photon or particle counting are unbiased 
estimates of the true intensities, but their square roots 
are not unbiased estimates of the structure factors, and 
this bias may carry over into parameters based on 
structure factors rather than intensities. A satisfactory 
correction can be made for the strong reflexions, but 
weak reflexions (which are required if the theoretical 
limit of resolution is to be reached) remain a problem. 

I. Introduction 

1.1. The positional parameters of atoms in crystals can 
be determined with considerable accuracy, and in 
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general they are remarkably little affected by system- 
atic errors and statistical fluctuations (Wilson, 1976b, 
1977a,b). The scaling factor and the thermal 
parameters, on the other hand, are sensitive to 
systematic errors and are biased by statistical fluctu- 
ations unless special precautions are taken (Wilson, 
1975, 1976b, 1977a,b, 1978b; Lomer & Wilson, 1975). 
The measurement of the distribution of electron density 
is even more sensitive to systematic errors and statis- 
tical bias, and there is a fundamental limitation of 
resolving power: only .reflexions with spacings greater 
than 12 can be measured, where ~. is the wavelength of 
the radiation employed, and sometimes the geometrical 
design of the apparatus imposes a higher limit 
2/2 sin 0max, where 0ma x is the largest Bragg angle that 
can be attained. One cannot expect, therefore, to be 
able to resolve details of the charge distribution on a 
scale much less than ½;t. Naturally it is possible to fit 
models to the observed intensities of reflexion that 
imply detail on a smaller scale, but the measurements 
would give no criterion for deciding between rival 
models giving approximately the samegoodness of fit. 
These remarks apply equally, mutatis mutandis, to 
measurements of the distribution of momentum density, 
of spin density, and of atomic-centre distribution in 
imperfect structures, and to diffraction measurements 
with electrons, neutrons etc. as well as to measure- 
ments with X-rays. 
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1.2. There is a considerable literature dealing with the 
experimental difficulties in obtaining intensity measure- 
ments of sufficient accuracy for determining density 
distributions. That up to about 1965 has been reviewed 
by Weiss (1966) [see also the opening chapters of 
Az~iroff, Kaplow, Kato, Weiss, Wilson & Young 
(1974)]. More recent papers are by Dawson (1967a,b), 
Dietrich (1972), Stevens & Coppens (1975), and Rees 
(1976, 1978), but this list is not exhaustive. The present 
paper is concerned with the theoretical difficulties of 
resolution (§ 2) and bias (§ 3). Some early theoretical 
papers are those of Booth (1946, 1947) and 
Cruickshank (1949). 

2. The fundamental limitation in density-distribution 
determination 

2.1. Most crystallographers are aware of the 'diffrac- 
tion ripples' or 'series-termination effects' exhibited 
when an electron-density (or other) distribution is 
represented by a Fourier series consisting of a finite 
number of terms. The spherical 'window' in reciprocal 
space through which the density is viewed has a 
maximum radius of 2/2 or 2 sin 0max/,~. (§ 1.1). Let us 
call this maximum radius s. If no other influences 
intervened, the observed density distribution would be 
the true density convoluted with the Fourier transform 
of a function that has the value unity within the limiting 
sphere and the value zero outside. This Fourier 
transform takes three different forms, depending on 
whether the density distribution is one-, two-, or three- 
dimensional. 

In the one-dimensional case the Fourier transform is 
given by 

-t-s 

T ( r ) =  f exp(2nirs)ds, (1) 
- -$  

which is readily integrated to give the expression 

T(r) = (sin 2nrs)/7~r, (2) 

familiar in all sorts of contexts. The first zero of T(r) 
occurs for 

2nrs = n--  3-14159 ..., (3) 

so that one-dimensional syntheses cannot be expected 
to resolve detail on a scale much smaller than 

r = 1/2s > 0-252. (4) 

The criterion of using the peak-to-first-zero distance as 
an indication of resolving power seems to have been 
introduced by Rayleigh (1879). 

2.2. In the two-dimensional case the integration is 
over the interior of a circle of radius s, and is most 
conveniently performed in polar coordinates: 

s 2 n  

T(r) = f f exp (2mrs cos (o) s ds do 
0 0 

$ . 

= 27~ f J0(2nrs) s ds 
0 

(5) 

2~2{jl(2nrs)  }/(2ztrs), (6) 

are Bessel functions of the first kind. where Jo and J1 
This expression has been familiar for a century in 
connexion with the resolving power of optical instru- 
ments with circular apertures, and its importance for 
two-dimensional crystallographic Fourier syntheses 
was emphasized by James (1948, pp. 399-410). The 
first zero occurs for 

2m's = 3.83171.. . ,  (7) 

so that two-dimensional syntheses cannot be expected 
to resolve detail on a scale much smaller than 

r = 3.83171 . . . /2ns _> (0-30491 . . . )2.  (8) 

2.3. In the three-dimensional case the integration is 
over the interior of a sphere of radius s, giving, in 
spherical polar coordinates, 

S 2 ~ 7 t  

T(r) = f f f exp (2rcirs cos ~o) s 2 sin ~o ds dtp d~. (9) 
0 0 0  

The integration is easily performed in terms of 
elementary functions, giving 

T(r) = 4zcsa{sin 2zv's -- 2ztrs cos 2ztrs}/(2rtrs) 3, (10) 

but for comparison with equation (6) the expression 
may be written 

T(r)=4ns3{j~(2nrs)}/(27~rs), (11) 

where Jl is a spherical Bessel function. The first zero 
occurs for 

2nrs = 4.49340.. . ,  (12) 

so that three-r~imensional syntheses cannot be expected 
to resolve detail on a scale much smaller than 

r = 4.49340. . . /2z~ > (0-35757...) 2. (13) 

The minimum resolutions in one-, two-, and three- 
dimensional syntheses are thus in the ratios 

1:1.22:1.43. (14) 

Criteria other than the peak-to-first-zero distance, such 
as the width at half-height for T(r), could be chosen, 
but would not alter the relative resolving powers 
substantially. 

2.4. At first sight it may seem surprising that the 
resolving power of a one-dimensional synthesis, for the 
problems to which it is applicable, is greater than that 
of a three-dimensional. It will not seem so odd to those 
familiar with the theory of  small-particle-size broaden- 
ing, who will recognize that equations (2), (6) and (10) 
are, within appropriate scale factors, the amplitude of 
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diffraction by, respectively, a cylinder of unit length 
and diameter diffracting from planes parallel to its ends, 
the same diffracting from planes parallel to its axis, and 
a sphere of unit diameter diffracting from any set of 
planes {Patterson (1939) and Wilson [1952, equations 
(6) and (14); 1970, equation (10-29)]}. The line 
breadths for small crystallites of these shapes increase 
in the same order as the widths of the smearing 
functions. 

2.5. Attempts to determine electron density in inter- 
atomic bonds are likely to necessitate three-dimensional 
syntheses, but other problems may involve only one- or 
two-dimensional syntheses. A recent example of a one- 
dimensional problem is the attempt to determine the 
distribution of the density of atomic (halogen-atom) 
centres along the c axis of cadmium analogues of 
apatite (Wilson, Sudarsanan & Young, 1977). Here it 
was confirmed that a one-dimensional synthesis based 
on the equivalent of the 00l reflexions only gave better 
resolution than a line section through a complete three- 
dimensional synthesis. It may be that there are problems 
(some types of two-dimensional disorder? some 
features of the bonding electrons in graphite?) that are 
somewhat better resolved by two-dimensional than by 
three-dimensional syntheses. 

2.6. If the observed density is ideally the convolution 
of the true density with the smearing function T(r) and 
T(r) is known, why is it impossible to deconvolute by 
the standard methods, such as the iteration method of 
Burger & van Cittert (1932), the Fourier method intro- 
duced by Smith (1934) but better known through the 
work of Stokes (1948), or the relaxation method of 
Paterson (1950)? These are all equivalent, in theory if 
not in practice, and the problem is most easily under- 
stood through the Fourier approach. The Fourier trans- 
form of a convolution is the simple product of the 
Fourier transforms of the convoluted functions [for an 
elementary treatment see Wilson (1963, pp. 82-84); the 
generalization to three dimensions is easy]. If the 
convolution is observed, and the smearing function is 
known, the Fourier transform of the true function is 
therefore 

Fourier transform of convolution 

Fourier transform of smearing function' 
(15) 

and the true function should be obtained immediately 
by taking the Fourier transform of the ratio (15). In the 
present problem, however, this process simply 
reproduces the convolution. The argument of Jones & 
Misell (1970) is readily generalized from one to two or 
three dimensions. Within the range of observation the 
Fourier transform of T(r) is unity, and outside this 
range it is zero. The ratio (15) thus gives the Fourier 
transform of the convolution, without change, up to the 
limit of observation. Beyond that limit it gives 

some quite unknown quantity 
, ( 1 6 )  

zero 

and it would clearly be meaningless to include such 
ratios in a Fourier transform. Deconvolution, there- 
fore, cannot remove termination-of-series effects from 
the observed density synthesis; the best objectively 
determinable estimate of the true density is the trun- 
cated Fourier series with coefficients as free as possible 
from systematic error and statistical bias. Attempts like 
those of Scheringer (1977) need to be made with great 
caution; either they are pointless, as leading back to the 
smeared distribution, or they allow the crystallog- 
rapher to insert (consciously or unconsciously) some of 
his pre-judgements of what the density ought to be into 
his estimate of what it is. Bayesian statisticians would 
presumably approve of the conscious use of the latter 
process. 

Similar remarks, mutatis  mutandis ,  apply to some 
types o f F  o -- F c synthesis. 

2.7.1. It is well known that the troughs of high and 
low density surrounding the central maximum of T(r), 
and hence surrounding any reasonably concentrated 
feature of a density distribution (such as the electron 
cloud around an atomic nucleus), can be made less 
conspicuous by weighting down the higher-order 
reflexions. As has been repeatedly pointed out [for 
example, by Wilson (1970, pp. 176-177)], the use of an 
'artificial temperature factor' worsens the agreement, in 
the least-squares sense, between the Fourier-series 
representation and the function represented; the sup- 
posed gain through removal of the troughs is paid for 
by a broadening of the central maximum and a general 
blurring of the image. The corresponding process in 
optical instruments is known as apodization (from a 
Greek word constructed to mean 'removal of the feet'), 
and there is an extensive theory [see, for example, the 
references cited by Jacquinot (1958), and Ross, Fiddy, 
Nieto-Vesperinas & Wheeler (1978)]. By selective 
suppression, such as the use of a square aperture 
instead of a circular one, it is often possible to shift the 
troughs from a region where they are a nuisance to a 
region where they are not, and thus, for example, to 
resolve the dark companion of Sirius from Sirius i tself-  
at the expense of turning Sirius from a circularly 
symmetric object into a cross. 

2.7.2. The analogy with particle-size broadening ({} 
2.4) may serve to suggest the regions of reciprocal 
space that should be used to obtain reduction of 
troughs in specified directions. For example, in the ease 
of the cadmium analogues of apatite, the optimum 
simple region would be the interior of a cube inscribed 
within the limiting sphere and oriented so that one of its 
triad axes is parallel to the hexad axis of the apatite. 
Troughs along the hexad axis would be practically 
suppressed, the central maximum would be enlarged, 
and there would be gross distortions in directions 
perpendicular to the cube faces - but these directions 
are not relevant in the particular problem. 

2.7.3. It is not so well known that the central 
maximum of T(r) can be reduced in size, at the expense 
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of enhancing the pattern of troughs, by selective 
weighting down of the low-order reflexions. The theory 
for the simplest case was worked out by Airy (1841), 
but it was Strutt (later Lord Rayleigh) (1872) who 
pointed out the increase in resolving power of a 
telescope produced by masking off the central part of 
the objective. It is readily seen that if the low orders are 
completely suppressed over the range 0 to t < s, 
equations (2), (6) and (11) are replaced by 

T(r) = (sin 2 m ' s ) / n r -  (sin 2nrt)/nr, (17) 

T(r) = 2nsZ{J~(2nrs) }/(2n-rs) 

and 

-- 2nt2{Jl(2~t)  }/(2~rt), 

T(r) = 4 zrs 3 {jl(2zcrs)}/(2~s) 

(18) 

favourable in comparison with the values 1.000, 0.402, 
0.217 for equations (20)-(22). 

2.9. In § 2.7.1 the low-order reflexions were sup- 
posed completely suppressed, and there seems to have 
been no crystallographic application of the procedure. 
For the sake of completeness, however, it should be 
mentioned that, before the introduction of powerful 
computers and direct methods, there was considerable 
interest in weighting up the high-order reflexions, in 
order to produce 'sharpened' Patterson syntheses. 
These show the expected decrease in the diameter of the 
Patterson peaks and the more pronounced troughs. The 
process is discussed in Lipson & Cochran (1953, pp. 
170-174). The calculation of unitary or normalized 
structure factors [see Wilson (1970, pp. 158-160) for 
an elementary account] is much used in direct methods, 
but rarely for density syntheses [see, however, Main & 
Hull (1978)]. An exception is the work on halogen- 
atom distribution in apatites, already mentioned in 
§ 2.5. 

- 4 ~3 {j,(2 ~ t )  }/(2re't) (19) 

for one, two and three dimensions respectively. Each 
shows an improvement in resolution, as defined by the 
Rayleigh criterion, but with more pronounced sub- 
sidiary peaks and troughs. There is no easy way of 
representing the first zeros as functions of t and s simul- 
taneously, but it is perhaps instructive to look at the 
limiting cases as t approaches s - that is, when only the 
outermost reflexions are used. The limiting forms are, 
with d written for s - t, 

T(r) = 2d cos 2nrs, (20) 

T(r) = 2rMSJo(2nrs), (21) 

and 

T(r) = 4nds z j0(2nrs) = 4nds2(sin 2nrs)/(2nrs). (22) 

3. Bias 

3.1. Any physical measurement is subject to errors of 
two types, systematic and random. In crystallographic 
measurements statistical fluctuation in the number of 
photons counted is likely to be the largest random 
error, but there can be irregular backlash in positioning 
mechanisms and so on. 'Bias' will be used here to 
indicate a particular type of systematic error, arising 
from inadequacy of mathematical techniques, whereby 
random errors, of mean value zero in the raw data, 
become a systematic bias in derived quantities - in the 
present case in the distribution of electron or other 
density. The density is given by a Fourier series in one, 
two or three dimensions; such as, for the three- 
dimensional case, 

The first zeros are at 

2 7 / T $  ~ 1 ~ 2.40482.. . ,  n, 

corresponding to minimum resolutions of 

(23) 

r > 0.1252, (0.191369.. .)  3,, 0.252 (24) 

respectively. These all show improvements on 
equations (4), (8) and (13), the improvement being least 
in the three-dimensional case. 

2.8. The 'improvement' described in the preceding 
paragraph is a reduction in the diameter of the central 
maximum, called the Airy disk in astronomical ap- 
plications. A different picture emerges if a criterion 
based on the nuisance value of the troughs is used, say 
the ratio of the depth of the first trough to the peak 
height. For equations (2), (6) and (10) this ratio takes 
the values 0.217, 0.123, 0.085, which are very 

p(x,y,z) = U -1 • F(hkl)  
hkl  

x e x p { - 2 n i ( h x  + ky + lz) + iq~(hkl)}, (25) 

where p is the electron etc. density, U is the volume of 
the unit cell, F(hkl)  is the modulus of the structure etc. 
factor of the hkl reflexion, q~(hkl) is its phase, and x,y,z 
are fractional coordinates within the unit cell. 
Difficulties in determining ~0 will be ignored; for the 
simple structures for which high-quality density deter- 
minations are desired the phase will often be fully deter- 
mined by the symmetry, or restricted to one of the two 
values 0 and n. Some more complex situations have 
been considered [for example, by Blow & Crick (1959), 
Rae (1974), Ross et al. (1978) and Price (1978)], but 
there is much to be said about the modulus o f F  without 
adding the complication of its phase. Since p(x,y,z) is a 
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linear function of the F's,  if the F ' s  as observed are 
unbiased estimates of the 'true' structure factors, 
p ( x , y , z )  will be an unbiased estimate of the 'true' 
density. 

3.2. In most crystallographic measurements the 
structure factor is not observed directly, but is inferred 
from measurements of an intensity proportional to the 
square of its modulus. The main exception to this state- 
ment is the direct determination of F from the spacing 
of P e n d e l l f f s u n g  fringes [see, for example, Kato 
(1969)], a technique applicable only to substances that 
can be prepared in the form of nearly perfect single 
crystals. Presumably structure factors so obtained are 
unbiased estimates. The situation is different for 
structure factors obtained from intensity measure- 
ments. 

3.3. Intensities measured by counting photons are in 
principle unbiased. The form of the distribution 
function for the fluctuations about the mean differs for 
different counting modes (Wilson, 1978c), and the 
following discussion is based on unmodified fixed-time 
counting. There will be differences in detail for fixed- 
count timing and intermediate modes, but no dif- 
ferences in principle. If the number of counts that ought 
to be have been registered is N, the actual number 
observed in any particular case is 

N O = N + e, (26) 

where e is the fluctuation. Theory indicates that, for 
fixed-time counting and in the absence of disturbing 
effects, N O has a Poisson distribution with mean and 
variance N, so that the mean value of e is zero, and the 
observed number of counts is thus an unbiased estimate 
of the 'true' number N, though the number found in any 
particular measurement may be greater or less. This 
property of absence of bias is preserved by any linear 
transformation of N o, such as (i) subtraction of back- 
ground; (ii) division by counting time in order to obtain 
a counting rate; and (iii) division by the Lorentz- 
polarization factor (see, however, § 3.5.2). Subtraction 
of background, which also has a Poisson distribution of 
counts in fixed-time counting, leads to an hyperbolic 
Bessel distribution, and the distributions for fixed-count 
timing are even more complex (Wilson, 1978a,c). As a 
result of the statistical fluctuations, the observed back- 
ground count may be greater than the total reflexion- 
plus-background count, so that some reflexions are 
recorded as having negative intensity. However, if the 
negative intensity observations are counted in, the 
recorded intensity is still an unbiased estimate of the 
'true' intensity [compare Hirshfeld & Rabinovich 
(1973)]. French & Wilson (1978) have suggested a 
method of estimating the probable positive value of an 
intensity recorded as negative. The method rests on a 
Bayesian combination of the a p r i o r i  distribution of the 
probability of an intensity (Wilson, 1949) with the 
probability of an intensity of a given positive value 
being recorded as negative. 

3.4. The property of lack of bias is lost if any non- 
linear transformation is applied to the measured 
intensity. The two non-linear transformations com- 
monly used in crystallography are (i) taking the square 
root of the intensity in order to obtain the modulus of 
the corresponding structure factor; and (ii) using 
weights that depend on the observed values of the 
intensity or of its square root (Wilson, 1976b). Only the 
first of these is of primary interest in the present 
context. Positive and negative fluctuations in the 
intensity have equal average values, but a negative 
fluctuation in the intensity depresses the square root by 
more than the amount that an equal positive fluctuation 
increases it. One can write 

F o = 11o 12 = ( I  + e) 1/2, (27) 

where F o is the observed modulus of the structure 
factor, I o is the observed intensity, I is the 'true' 
intensity and e is the fluctuation. If the fluctuations are 
small in comparison with the intensity, one can expand 
the square root in a power series, obtaining 

F o  = 11/2 + ½d-l /2  _ ~21-3 /2  + . . . .  (28) 

The average value of e is zero, so that the expected 
value of the second term is zero, but the average value 
of e 2 is positive and finite; it is, of course, the variance 
of the intensity, a2(Io) .  The expected value of the 
modulus of the structure factor, estimated as the square 
root of the observed intensity, is thus biased to low 
values. An estimate, unbiased to the second order in the 
fluctuations, is 

Fcorr- - - o  11/2 + ~t72(Io)1-3/2 + . . . .  (29) 

A correction equivalent to this was given without 
derivation by Ibers & Hamilton (1964), and Rees 
(1977a,b) has attempted a closer approximation, based 
on the assumption of a Gaussian intensity distribution. 

It is obvious that the correction in equation (29) is 
greatest, both relatively and absolutely, for the weaker 
reflexions. It is therefore unfortunate that it is just for 
these reflexions that it is impossible to use it. The series 
(28) converges only if e < L which in practice means 
that it cannot be used for I o less than about 3tr(Io). 
There seems to be, as yet, no practicable means of 
correcting for the bias in structure factors derived from 
weak or measured-as-negative intensities. Possibly the 
French & Wilson (1978) procedure could be modified 
to provide an unbiased estimate; French (private 
communication) believes that there is a small positive 
bias. 

3.5.1. One can make some qualitative probable 
deductions about the effect of the above underestimate 
(if not allowed for) on the derived electron density. In 
equation (25), any particular F o may be larger or 
smaller than its true value, but on the whole the 
coefficients will be too small, and the general level of 
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the electron-density maxima will be too low. This is, of 
course, an effect quite distinct from the distortion, 
generally amounting to a lowering, resulting from the 
finiteness of the series. Further, the higher-order 
coefficients, which trim the electron-density maxima 
into shape, are likely to be smaller, and therefore under- 
estimated to a greater extent, than are the lower-order 
coefficients, which determine the general position of the 
maxima. The 'observed' electron-density maxima may 
thus be expected to be lower and more diffuse than the 
'true'. Variation of the parameters of the calculated 
electron density to match the observed is thus likely to 
lead to (i) a scale factor that is too low, in an attempt to 
match the too-low general level of the electron-density 
maxima, and (ii) temperature parameters (B or fl) that 
are too big, in an attempt to match the too-diffuse 
maxima. The first of these effects was noticed by 
Wilson (1975). He showed that if the scale factor had 
originally been adjusted to make 

Z Ic = Z Io, (30) 

equivalent to 

( I e )=( Io ) ,  (31) 

then least-squares refinement in 

RI = Z (Fo -  EFc)Z/Z FZo (32) 

of the scaling factor E would not confirm the value 
unity, as would naively be expected, but would lead 
instead to the lower value 

E =  ~.FoFc/~FZo = (FoFc)/(io) (33) 

{Wilson [1975, equation (9), with change of notation] }. 
This result has been independently rediscovered by 
Rees [1978, equation (3)] and Davis, Maslen & 
Varghese [1978, equation (15)]. The numerical value of 
E is found to be 1 - ½R 1, where R1 is the value of the 
residual without adjustment [Wilson, 1975, equation 
(10)], and is thus some tenths of a percent less than 
unity (Wilson, 1978b). The residual is reduced by the 
adjustment to 

(R1)adj=Ra--¼R 2 (34) 

[Wilson, 1975, equation (11)]. Equation (16) of Davis, 
Maslen & Varghese leads to the same expression when 
use is made of the equivalence of direct-space and 
reciprocal-space least-squares refinements [Wilson 
(1976a); Davis, Maslen & Varghese (1978, 
Appendix)]. 

3.5.2. Nielsen (1977) describes a process of optimiz- 
ing weights for use in least-squares analysis. The 
process is analytical rather than numerical, but the 
resultant weights are in principle similar to the optimum 
filtering function of Davis, Maslen & Varghese (see § 
3.6). In the particular example given by Nielsen both 
the high-order and the low-order reflexions are 
weighted down relatively to those of medium order. 

Nielsen (private communication) considers the weight- 
ing down of the low-order reflexions 'primarily as an 
effect of the poor Lorentz correction' for these 
reflexions. 

3.5.3. Equation (33) does not depend on the source 
of the differences between F o and F c, and is valid 
whether they arise from statistical fluctuations or from 
systematic errors (defects in the model from which Fc is 
calculated) or from both. It is, however, of interest to 
confirm that in the absence of systematic errors 
equation (33) would follow directly from the bias in F o 
if this is not corrected in accordance with equation (29). 
In the formulation of Wilson (1973, 1976b) an 
uncorrected bias is a systematic error, and the bias in 
any derived parameter is [Wilson, 1973, equation (8)] 

- -Z w6F'/Z w(F~) 2 (35) 

in the notation of the present paper; the w's are weights 
if desired, ~ is the amount of the bias, and primes 
indicate differentiation of the calculated structure factor 
with respect to the parameter in question. In the present 
instance, with the scaling factor near unity, the 
derivative of the structure factor with respect to the 
scaling factor is practically equal to the structure 
factor, so that the expression (35) becomes 

--k Z wFc 02(/) I-3/z/~ WrZc . (36) 

Since a2(/) ~ 4F 2 a2(F) this becomes, nearly enough, 

-½ Z wa2(r)/Z wV 2, (37) 

which is -½R~ if there is statistical bias only. The 
approximation is rather better than might have been 
expected from the restrictions on the convergence of the 
series (28) and (29). This is explained by the additional 
factor F c arising from Fc, which reduces the effects of 
the dubious terms with small intensity. A similar 
argument shows that the general magnitude of the 
thermal parameters (B's or fl's) is increased by a 
fraction of the same order of magnitude (Wilson, 
1977a). 

3.6. Davis, Maslen & Varghese (1978) evaluate E 
(in their notation M) for about two-dozen successive 
shells of (sin 0)/2, thus, in effect, allowing themselves 
about two-dozen parameters to represent the bias in the 
Fo'S, not merely a scaling and an overall temperature 
factor. The resultant, which they call a minimum- 
variance or optimum filtering function, is thus an 
'apodization' in the sense described in § 2.7. Their Fig. 
3 shows the predicted broadening of the central image 
and the reduction of the troughs; the resolution of the 
former is reduced from the equivalent of s = 1.07/k -1 
to the equivalent of about s = 0.90 A -1. Clearly this 
may be considered an improvement in applications 
where the troughs are a nuisance, and a worsening in 
applications where lack of resolution of the peaks is a 
greater nuisance. It would be interesting to know the 
effect of correcting the observed structure factors for 
bias before calculating the values of M. 
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3.7.1. Least-squares refinement in reciprocal space is 
exactly equivalent to obtaining a least-squares match of 
the corresponding observed and calculated densities in 
direct space, any weights used in the reciprocal-space 
refinement appearing as distortions of the Fourier 
coefficients of the density in direct space (Wilson, 
1976a, in Effect o f  weights). In discussions of bias of 
electron or other densities, therefore, unit weights 
should be assigned to the Fourier coefficients involved; 
this will be assumed in the discussion of bias in 
positional parameters derived from least-squares refine- 
ment in R 1 (§§ 3.8-3.11). Because of the reciprocity 
just invoked the results are equally applicable to 
parameters derived from electron-density maps. 

3.7.2. It should be noted, however, that non-unit 
weights may be used when it is deliberately intended to 
obtain parameters 'biased' by giving greater emphasis 
to some features of the electron density than to other 
features. For example, Cochran (1948) showed that 
weights proportional to the reciprocal of an atomic 
scattering factor led to parameters corresponding to the 
maximum (as distinguished from the centroid or other 
measure of location) of the electron density of that 
atom. This idea has been greatly developed by Dunitz 
& Seiler (1973), who showed how weights could be 
used to accentuate particular features of the electron 
cloud in estimating the atomic parameters. Such 
deliberately induced biases are conceptually different 
from those introduced by inadequate mathematical 
techniques for handling the raw data. Ideally refine- 
ment procedures should compare observed and cal- 
culated counts, rather than observed and calculated 
intensities or structure factors, so that each detected 
photon receives equal weight. This would be technically 
possible, though perhaps inconvenient, for least-squares 
or maximum-likelihood refinements, but it is difficult to 
see how it could be applied to electron-density 
mapping. 

3.8. Equation (35) applies to the bias in positional 
parameters also. Consider first the space group P1. The 
derivative of F c with respect to a positional parameter, 
say x for the ith atom, is in this case 

F" = 2zthft sin 0 i, (38) 

where f / i s  the atomic scattering factor of the ith atom 
and 0~ is the difference in phase between its scattering 
and that of the complete unit cell. From equation (35) 
the bias of this parameter arising from the bias in the 
structure factors is 

_ Y. &f /s in  0~. (39) 
2~r ~ h 2 f2  sin 2 Oi" 

The terms in the bottom line are all positive, but those 
in the top line are of random sign, so the expected value 
of the bias in the positional parameters is zero, though 
for any particular parameter it may be considerable. 

It has been suggested that the statistical fluctuations 
allow the atom, or rather its Fourier representation, to 
slide a little way down the slope of the electron density 
[Wilson, 1977a, discussion of equations (82)-(85)], 
but the argument is based on a very crude approxima- 
tion. 

In equation (39) the number of terms top and bottom 
is the same, and equal to the total number of reflexions 
measured, say N. The root-mean-square (r.m.s.) bias 
thus increases as N 1/2 through the top line, and 
decreases as N -1 through the bottom line, so that 
overall the r.m.s, bias decreases as N -~/2, the inverse 
square root of the number of reflexions measured. One 
thus has 

( ~  h2fi 2 sin 2 0/) 1/2 
r.m.s, bias in x i = 2~V1/2(h: f/2 sin 2 Oi)' (40) 

where the averaging is over the N values of hkl. 
Substitution of c5 from 

'~' --10"2(10) 1 - 3 / 2  "~ --½0"2(Fo) F -I  (41)  

gives 

(a4(Fo) F-2 h 2 f/2 sin 2 0i)i/2 (42) 
r.m.s, bias in x i ,,, 4~V1/2(h2 f/2 sin2 0i ) 

There is no reason to expect any correlation between 
sin 0 i and h and fi, and o2(Fo) does not vary greatly 
with hkl, at any rate for fixed-time counting. It is 
difficult to demonstrate that there is no correlation 
between sin 0 i and F, but any correlation must be small, 
since (i) the contribution of the ith atom to F is of the 
order of f//~rl/2 of the total [where ~r is the sum of the 
squares of the atomic scattering factors (Wilson, 
1942)], and is thus of the order of the inverse square 
root of the number of atoms in the unit cell, say n -I/2, 
and (ii) the contribution of the ith atom to F varies as 
cos 0 i, and is thus in quadrature to sin 0i. Neglecting 
correlations and putting (sin 2 0) = ½ gives 

a2(eo)(X-1) ,/2 
r.m.s, bias in x i ~ 81/2 rdV1/2(h2fi2)l/2. (43) 

Since the statistical contribution to R 1 is o2(Fo) / ( I )  ~ 
a2(Fo)/L equation (43) becomes 

s(X-1)1/= 
r.m.s, bias ofxi  ~ R I 81/2 rdVX/2(h 2 fi2)l/2 • (44) 

If reflexions measured as zero were to be included, the 
mean value of 1-1 would be infinite, giving infinite bias. 
However, in actual refinements in R 1, reflexions of less 
than some minimum value Imi n [often 3a(Io)] are 
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omitted, so that (1-1) remains finite. For the acentric 
distribution (Wilson, 1949) 

27--1 f ~ , . i - x  exp (--I/27) d/  
( I - 1 ) ~  27-1 f z~ , . exp( - I /27)d1  (45) 

= ,S, -1 El(lmln/27) 
exp (_Imin/27) , (46) 

where El(x)  is the exponential integral. Since Imi,/,F, is 
ordinarily small, to a first approximation 

( i - 1 )  = 27-1[1oge(27/imin)_ y] (47) 

where y = 0.577. . .  is Euler's constant (Abramowitz & 
Stegun, 1964, formula 5.1.11). One then has 

271/2[lOge(27/Imin) _ y] 1/2 
r.m.s, bias o f  x i "~ R 1 (48) 81/2 7L/V1/2(h 2 f/2>1/2 

For a quasi-equiatom structure 27 ~ n f  2, where n is the 
number of atoms in the unit cell and f is a mean 
structure factor, so that 

r.m.s, bias ofx  i ~ R 1 n l/2[lOge(~,/Imin) 

-- )']1/2/81/2 zcN 1/2 hr.m.s.. (49) 

The bias thus increases as the square root of the 
number of atoms to be located and decreases rather 
faster tb.~an the square root of the number of reflexions 
available to locate them (hr.m.s. increases with increas- 
ing n and N). This behaviour seems very reasonable, as 
does the linear increase with R 1._ 

3.9. If the space group is P1 the treatment in § 3.8 
needs modification in two respects. First, the expression 
for F ' ,  equation (38), is doubled; 0 i retains its inter- 
pretation as the phase of scattering of the ith atom (not 
that of the ith centrosymmetric pair). Secondly, the 
centric distribution must be used instead of the acentric 
in equation (45), giving 

(27r27) -1/2 f ~ , . I  -a/2 exp (--I/227) dI  
( I -1)  = (2zr27) -1/2 f ~ , . I  -~/2 exp(--I/227) d/" (50) 

The integrals are incomplete F functions (Abramowitz 
& Stegun, 1964, pp. 260-263). However, a series can 
be obtained by repeated integration by parts, giving 

( 1 - 1 ) =  ,,Y.-al(2~rlzrImin) 1/2 + 2/re-- 1 + ...] (51) 

with sufficient accuracy for estimating the bias in xi; the 
terms not written down are in ascending powers of 
(Imln/2,S) 1/2. One thus obtains 

r.m.s, bias ofxi  ~ R 1 271/2[(227/7rJm|n) 1/2 

+ 2/zc-- 111/2/4~V1/2(h2fi2)~/2, (52) 

which differs from equation (48) through a factor 2 -I/2 
and in the form of the function of ~'/Imin in the square 
bracket. Earlier estimates of r.m.s, bias (Wilson, 
1977a,b) used cruder approximations, equivalent to 
putting (1-1) = 27-1, so that the factors in square 
brackets in equations (48) and (52) did not appear. The 
present estimates, therefore, are several times as big. 

3.10. The arguments leading to equations (38)-(52) 
are based on the assumption that the atoms are in 
general positions in the space group P1 or P i .  Atoms in 
special positions have one or more positional param- 
eters fixed by the symmetry, and for such parameters 
the bias vanishes. If the atoms are in a Wyckoff 
position of multiplicity p, the bias is reduced by a factor 
ofp  -1/2 (acentric)or (½p)-1/2 (centric) (Wilson, 1977a). 
In §§ 3.8 and 3.9 it was tacitly assumed that inter- 
active effects between dispersion (Wilson, 1975, 1978d) 
and bias could be neglected. It was also assumed that 
the N reflexions entering into equation (39) and later 
equations were non-equivalent. If a full set of reflexions 
is used the equations for the r.m.s, bias must be 
multiplied by the square root of the multiplicity factor 
for the general reflexions of the space group in question. 

3.11. It would be of great interest to obtain an 
expression for the bias in the electron density [equation 
(25)] resulting from the bias --½aE(Fo)/F in the 
structure factors. For fixed-time counting the variance 
of the structure factors does not vary greatly with hkl, 
so that the bias synthesis has coefficients approxi- 
mately proportional to the reciprocals of the true 
coefficients. A search of several textbooks on Fourier 
analysis did not reveal any general properties relating 
syntheses with coefficients F and F -1. The only obvious 
remark, therefore, is that the bias in the scaling factor 
will reduce the mean density and the r.m.s, variation 
about the mean by a fraction ½R 1, as qualitatively 
anticipated in § 3.5. The effect is not, however, a trivial 
change in scale; the peak shapes are distorted by the 
selective weighting down of the weaker reflexions. 

4. Discussion 

Since the biases discussed in § 3 depend on the variance 
of the observations, they can be reduced to any desired 
extent by improving the stability of the apparatus and 
increasing the counting times. They are thus likely to be 
of little importance in highly accurate investigations of 
elements or simple compounds in space groups of high 
symmetry, but may render suspect deductions from 
observations of ordinary quality on more complex 
compounds. The limit of resolution discussed in § 2 is 
independent of the accuracy of the observations, and 
can only be reduced by going to shorter wavelengths, 
and so enlarging the reciprocal-space 'window' through 
which the density is viewed. For Cu Ka radiation, for 
example, the limit is of the same order of magnitude as 
the size of the features interpreted as bonding electrons. 
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I am indebted to Dr S. C. Abrahams,  Professors P. 
Coppens and D. W. J. Cruickshank, and Drs S. 
French, E. N. Maslen, K. Nielsen, P. F. Price, B. Rees 
and C. Scheringer for correspondence, and to Drs S. 
French and K. Wilson, and Drs E. N. Maslen and B. 
Rees for access to papers in the course of publication. 

Note: Since this paper was written the principal 
papers given at the Bat-Sheva Seminar on Electron 
Density Mapping, 1977, have appeared (Hirshfeld, 
1977). Many of the points made in the present paper 
were touched on in the seminar, but not treated as fully. 
A few references to the seminar papers or the original 
sources have been added at the 'referee's report' stage. 
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